Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
bioRxiv ; 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38260662

RESUMEN

The red nucleus is a large brainstem structure that coordinates limb movement for locomotion in quadrupedal animals (Basile et al., 2021). The humans red nucleus has a different pattern of anatomical connectivity compared to quadrupeds, suggesting a unique purpose (Hatschek, 1907). Previously the function of the human red nucleus remained unclear at least partly due to methodological limitations with brainstem functional neuroimaging (Sclocco et al., 2018). Here, we used our most advanced resting-state functional connectivity (RSFC) based precision functional mapping (PFM) in highly sampled individuals (n = 5) and large group-averaged datasets (combined N ~ 45,000), to precisely examine red nucleus functional connectivity. Notably, red nucleus functional connectivity to motor-effector networks (somatomotor hand, foot, and mouth) was minimal. Instead, red nucleus functional connectivity along the central sulcus was specific to regions of the recently discovered somato-cognitive action network (SCAN; (Gordon et al., 2023)). Outside of primary motor cortex, red nucleus connectivity was strongest to the cingulo-opercular (CON) and salience networks, involved in action/cognitive control (Dosenbach et al., 2007; Newbold et al., 2021) and reward/motivated behavior (Seeley, 2019), respectively. Functional connectivity to these two networks was organized into discrete dorsal-medial and ventral-lateral zones. Red nucleus functional connectivity to the thalamus recapitulated known structural connectivity of the dento-rubral thalamic tract (DRTT) and could prove clinically useful in functionally targeting the ventral intermediate (VIM) nucleus. In total, our results indicate that far from being a 'motor' structure, the red nucleus is better understood as a brainstem nucleus for implementing goal-directed behavior, integrating behavioral valence and action plans.

2.
bioRxiv ; 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-37987000

RESUMEN

Motor adaptation in cortico-striato-thalamo-cortical loops has been studied mainly in animals using invasive electrophysiology. Here, we leverage functional neuroimaging in humans to study motor circuit plasticity in the human subcortex. We employed an experimental paradigm that combined two weeks of upper-extremity immobilization with daily resting-state and motor task fMRI before, during, and after the casting period. We previously showed that limb disuse leads to decreased functional connectivity (FC) of the contralateral somatomotor cortex (SM1) with the ipsilateral somatomotor cortex, increased FC with the cingulo-opercular network (CON) as well as the emergence of high amplitude, fMRI signal pulses localized in the contralateral SM1, supplementary motor area and the cerebellum. From our prior observations, it remains unclear whether the disuse plasticity affects the thalamus and striatum. We extended our analysis to include these subcortical regions and found that both exhibit strengthened cortical FC and spontaneous fMRI signal pulses induced by limb disuse. The dorsal posterior putamen and the central thalamus, mainly CM, VLP and VIM nuclei, showed disuse pulses and FC changes that lined up with fmri task activations from the Human connectome project motor system localizer, acquired before casting for each participant. Our findings provide a novel understanding of the role of the cortico-striato-thalamo-cortical loops in human motor plasticity and a potential link with the physiology of sleep regulation. Additionally, similarities with FC observation from Parkinson Disease (PD) questions a pathophysiological link with limb disuse.

3.
Proc Natl Acad Sci U S A ; 120(21): e2218958120, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37186863

RESUMEN

Major depressive disorder (MDD) is widely hypothesized to result from disordered communication across brain-wide networks. Yet, prior resting-state-functional MRI (rs-fMRI) studies of MDD have studied zero-lag temporal synchrony (functional connectivity) in brain activity absent directional information. We utilize the recent discovery of stereotyped brain-wide directed signaling patterns in humans to investigate the relationship between directed rs-fMRI activity, MDD, and treatment response to FDA-approved neurostimulation paradigm termed Stanford neuromodulation therapy (SNT). We find that SNT over the left dorsolateral prefrontal cortex (DLPFC) induces directed signaling shifts in the left DLPFC and bilateral anterior cingulate cortex (ACC). Directional signaling shifts in the ACC, but not the DLPFC, predict improvement in depression symptoms, and moreover, pretreatment ACC signaling predicts both depression severity and the likelihood of SNT treatment response. Taken together, our findings suggest that ACC-based directed signaling patterns in rs-fMRI are a potential biomarker of MDD.


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/terapia , Depresión , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Giro del Cíngulo/diagnóstico por imagen , Corteza Prefrontal/diagnóstico por imagen
4.
Nature ; 617(7960): 351-359, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37076628

RESUMEN

Motor cortex (M1) has been thought to form a continuous somatotopic homunculus extending down the precentral gyrus from foot to face representations1,2, despite evidence for concentric functional zones3 and maps of complex actions4. Here, using precision functional magnetic resonance imaging (fMRI) methods, we find that the classic homunculus is interrupted by regions with distinct connectivity, structure and function, alternating with effector-specific (foot, hand and mouth) areas. These inter-effector regions exhibit decreased cortical thickness and strong functional connectivity to each other, as well as to the cingulo-opercular network (CON), critical for action5 and physiological control6, arousal7, errors8 and pain9. This interdigitation of action control-linked and motor effector regions was verified in the three largest fMRI datasets. Macaque and pediatric (newborn, infant and child) precision fMRI suggested cross-species homologues and developmental precursors of the inter-effector system. A battery of motor and action fMRI tasks documented concentric effector somatotopies, separated by the CON-linked inter-effector regions. The inter-effectors lacked movement specificity and co-activated during action planning (coordination of hands and feet) and axial body movement (such as of the abdomen or eyebrows). These results, together with previous studies demonstrating stimulation-evoked complex actions4 and connectivity to internal organs10 such as the adrenal medulla, suggest that M1 is punctuated by a system for whole-body action planning, the somato-cognitive action network (SCAN). In M1, two parallel systems intertwine, forming an integrate-isolate pattern: effector-specific regions (foot, hand and mouth) for isolating fine motor control and the SCAN for integrating goals, physiology and body movement.


Asunto(s)
Mapeo Encefálico , Cognición , Corteza Motora , Mapeo Encefálico/métodos , Mano/fisiología , Imagen por Resonancia Magnética , Corteza Motora/anatomía & histología , Corteza Motora/fisiología , Humanos , Recién Nacido , Lactante , Niño , Animales , Macaca/anatomía & histología , Macaca/fisiología , Pie/fisiología , Boca/fisiología , Conjuntos de Datos como Asunto
5.
Proc Natl Acad Sci U S A ; 120(7): e2212256120, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36745794

RESUMEN

The distribution of brain aerobic glycolysis (AG) in normal young adults correlates spatially with amyloid-beta (Aß) deposition in individuals with symptomatic and preclinical Alzheimer disease (AD). Brain AG decreases with age, but the functional significance of this decrease with regard to the development of AD symptomatology is poorly understood. Using PET measurements of regional blood flow, oxygen consumption, and glucose utilization-from which we derive AG-we find that cognitive impairment is strongly associated with loss of the typical youthful pattern of AG. In contrast, amyloid positivity without cognitive impairment was associated with preservation of youthful brain AG, which was even higher than that seen in cognitively unimpaired, amyloid negative adults. Similar findings were not seen for blood flow nor oxygen consumption. Finally, in cognitively unimpaired adults, white matter hyperintensity burden was found to be specifically associated with decreased youthful brain AG. Our results suggest that AG may have a role in the resilience and/or response to early stages of amyloid pathology and that age-related white matter disease may impair this process.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Adulto Joven , Humanos , Enfermedad de Alzheimer/patología , Tomografía de Emisión de Positrones , Encéfalo/metabolismo , Péptidos beta-Amiloides/metabolismo , Disfunción Cognitiva/patología , Amiloide/metabolismo , Proteínas Amiloidogénicas , Glucólisis
6.
bioRxiv ; 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38187528

RESUMEN

Neural activity in awake organisms shows widespread and spatiotemporally diverse correlations with behavioral and physiological measurements. We propose that this covariation reflects in part the dynamics of a unified, arousal-related process that regulates brain-wide physiology on the timescale of seconds. Taken together with theoretical foundations in dynamical systems, this interpretation leads us to a surprising prediction: that a single, scalar measurement of arousal (e.g., pupil diameter) should suffice to reconstruct the continuous evolution of multimodal, spatiotemporal measurements of large-scale brain physiology. To test this hypothesis, we perform multimodal, cortex-wide optical imaging and behavioral monitoring in awake mice. We demonstrate that spatiotemporal measurements of neuronal calcium, metabolism, and blood-oxygen can be accurately and parsimoniously modeled from a low-dimensional state-space reconstructed from the time history of pupil diameter. Extending this framework to behavioral and electrophysiological measurements from the Allen Brain Observatory, we demonstrate the ability to integrate diverse experimental data into a unified generative model via mappings from an intrinsic arousal manifold. Our results support the hypothesis that spontaneous, spatially structured fluctuations in brain-wide physiology-widely interpreted to reflect regionally-specific neural communication-are in large part reflections of an arousal-related process. This enriched view of arousal dynamics has broad implications for interpreting observations of brain, body, and behavior as measured across modalities, contexts, and scales.

7.
J Alzheimers Dis ; 85(2): 905-924, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34897083

RESUMEN

BACKGROUND: Currently, brain tissue atrophy serves as an in vivo MRI biomarker of neurodegeneration in Alzheimer's disease (AD). However, postmortem histopathological studies show that neuronal loss in AD exceeds volumetric loss of tissue and that loss of memory in AD begins when neurons and synapses are lost. Therefore, in vivo detection of neuronal loss prior to detectable atrophy in MRI is essential for early AD diagnosis. OBJECTIVE: To apply a recently developed quantitative Gradient Recalled Echo (qGRE) MRI technique for in vivo evaluation of neuronal loss in human hippocampus. METHODS: Seventy participants were recruited from the Knight Alzheimer Disease Research Center, representing three groups: Healthy controls [Clinical Dementia Rating® (CDR®) = 0, amyloid ß (Aß)-negative, n = 34]; Preclinical AD (CDR = 0, Aß-positive, n = 19); and mild AD (CDR = 0.5 or 1, Aß-positive, n = 17). RESULTS: In hippocampal tissue, qGRE identified two types of regions: one, practically devoid of neurons, we designate as "Dark Matter", and the other, with relatively preserved neurons, "Viable Tissue". Data showed a greater loss of neurons than defined by atrophy in the mild AD group compared with the healthy control group; neuronal loss ranged between 31% and 43%, while volume loss ranged only between 10% and 19%. The concept of Dark Matter was confirmed with histopathological study of one participant who underwent in vivo qGRE 14 months prior to expiration. CONCLUSION: In vivo qGRE method identifies neuronal loss that is associated with impaired AD-related cognition but is not recognized by MRI measurements of tissue atrophy, therefore providing new biomarkers for early AD detection.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Anciano , Anciano de 80 o más Años , Péptidos beta-Amiloides/metabolismo , Atrofia , Biomarcadores , Estudios de Casos y Controles , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/patología , Progresión de la Enfermedad , Imagen Eco-Planar , Femenino , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Humanos , Modelos Lineales , Masculino
8.
Nat Aging ; 2(11): 991-999, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-37118084

RESUMEN

White matter lesions in cerebral small vessel disease are related to ischemic injury and increase the risk of stroke and cognitive decline. Pathological changes due to cerebral small vessel disease are increasingly recognized outside of discrete lesions, but the metabolic alterations in nonlesional tissue has not been described. Aerobic glycolysis is critical to white matter myelin homeostasis and repair. In this study, we examined cerebral metabolism of glucose and oxygen as well as blood flow in individuals with and without cerebral small vessel disease using multitracer positron emission tomography. We show that glycolysis is relatively elevated in nonlesional white matter in individuals with small vessel disease relative to healthy, age-matched controls. On the other hand, in young healthy individuals, glycolysis is relatively low in areas of white matter susceptible to lesion formation. These results suggest that increased white matter glycolysis is a marker of pathology associated with small vessel disease.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales , Disfunción Cognitiva , Accidente Cerebrovascular , Sustancia Blanca , Humanos , Sustancia Blanca/diagnóstico por imagen , Tomografía Computarizada por Rayos X , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico por imagen , Accidente Cerebrovascular/patología , Disfunción Cognitiva/patología
9.
Brain Sci ; 11(12)2021 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-34942867

RESUMEN

While significant progress has been achieved in studying resting-state functional networks in a healthy human brain and in a wide range of clinical conditions, many questions related to their relationship to the brain's cellular constituents remain. Here, we use quantitative Gradient-Recalled Echo (qGRE) MRI for mapping the human brain cellular composition and BOLD (blood-oxygen level-dependent) MRI to explore how the brain cellular constituents relate to resting-state functional networks. Results show that the BOLD signal-defined synchrony of connections between cellular circuits in network-defined individual functional units is mainly associated with the regional neuronal density, while the between-functional units' connectivity strength is also influenced by the glia and synaptic components of brain tissue cellular constituents. These mechanisms lead to a rather broad distribution of resting-state functional network properties. Visual networks with the highest neuronal density (but lowest density of glial cells and synapses) exhibit the strongest coherence of the BOLD signal as well as the strongest intra-network connectivity. The Default Mode Network (DMN) is positioned near the opposite part of the spectrum with relatively low coherence of the BOLD signal but with a remarkably balanced cellular contents, enabling DMN to have a prominent role in the overall organization of the brain and hierarchy of functional networks.

10.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34404728

RESUMEN

The hippocampus is critically important for a diverse range of cognitive processes, such as episodic memory, prospective memory, affective processing, and spatial navigation. Using individual-specific precision functional mapping of resting-state functional MRI data, we found the anterior hippocampus (head and body) to be preferentially functionally connected to the default mode network (DMN), as expected. The hippocampal tail, however, was strongly preferentially functionally connected to the parietal memory network (PMN), which supports goal-oriented cognition and stimulus recognition. This anterior-posterior dichotomy of resting-state functional connectivity was well-matched by differences in task deactivations and anatomical segmentations of the hippocampus. Task deactivations were localized to the hippocampal head and body (DMN), relatively sparing the tail (PMN). The functional dichotomization of the hippocampus into anterior DMN-connected and posterior PMN-connected parcels suggests parallel but distinct circuits between the hippocampus and medial parietal cortex for self- versus goal-oriented processing.


Asunto(s)
Mapeo Encefálico , Hipocampo/fisiología , Red Nerviosa/fisiología , Lóbulo Parietal/fisiología , Adulto , Bases de Datos Factuales , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Memoria Episódica , Vías Nerviosas , Análisis y Desempeño de Tareas , Adulto Joven
11.
Sci Adv ; 7(30)2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34290088

RESUMEN

We propose and empirically support a parsimonious account of intrinsic, brain-wide spatiotemporal organization arising from traveling waves linked to arousal. We hypothesize that these waves are the predominant physiological process reflected in spontaneous functional magnetic resonance imaging (fMRI) signal fluctuations. The correlation structure ("functional connectivity") of these fluctuations recapitulates the large-scale functional organization of the brain. However, a unifying physiological account of this structure has so far been lacking. Here, using fMRI in humans, we show that ongoing arousal fluctuations are associated with global waves of activity that slowly propagate in parallel throughout the neocortex, thalamus, striatum, and cerebellum. We show that these waves can parsimoniously account for many features of spontaneous fMRI signal fluctuations, including topographically organized functional connectivity. Last, we demonstrate similar, cortex-wide propagation of neural activity measured with electrocorticography in macaques. These findings suggest that traveling waves spatiotemporally pattern brain-wide excitability in relation to arousal.

12.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33753484

RESUMEN

Whole-brain resting-state functional MRI (rs-fMRI) during 2 wk of upper-limb casting revealed that disused motor regions became more strongly connected to the cingulo-opercular network (CON), an executive control network that includes regions of the dorsal anterior cingulate cortex (dACC) and insula. Disuse-driven increases in functional connectivity (FC) were specific to the CON and somatomotor networks and did not involve any other networks, such as the salience, frontoparietal, or default mode networks. Censoring and modeling analyses showed that FC increases during casting were mediated by large, spontaneous activity pulses that appeared in the disused motor regions and CON control regions. During limb constraint, disused motor circuits appear to enter a standby mode characterized by spontaneous activity pulses and strengthened connectivity to CON executive control regions.


Asunto(s)
Giro del Cíngulo/fisiología , Plasticidad Neuronal/fisiología , Descanso/fisiología , Adulto , Mapeo Encefálico , Función Ejecutiva/fisiología , Femenino , Giro del Cíngulo/citología , Giro del Cíngulo/diagnóstico por imagen , Voluntarios Sanos , Humanos , Imagen por Resonancia Magnética , Masculino , Red Nerviosa/fisiología
13.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33597303

RESUMEN

Slow waves (SWs) are globally propagating, low-frequency (0.5- to 4-Hz) oscillations that are prominent during sleep and anesthesia. SWs are essential to neural plasticity and memory. However, much remains unknown about the mechanisms coordinating SW propagation at the macroscale. To assess SWs in the context of macroscale networks, we recorded cortical activity in awake and ketamine/xylazine-anesthetized mice using widefield optical imaging with fluorescent calcium indicator GCaMP6f. We demonstrate that unilateral somatosensory stimulation evokes bilateral waves that travel across the cortex with state-dependent trajectories. Under anesthesia, we observe that rhythmic stimuli elicit globally resonant, front-to-back propagating SWs. Finally, photothrombotic lesions of S1 show that somatosensory-evoked global SWs depend on bilateral recruitment of homotopic primary somatosensory cortices. Specifically, unilateral lesions of S1 disrupt somatosensory-evoked global SW initiation from either hemisphere, while spontaneous SWs are largely unchanged. These results show that evoked SWs may be triggered by bilateral activation of specific, homotopically connected cortical networks.


Asunto(s)
Ondas Encefálicas/fisiología , Estimulación Eléctrica , Potenciales Evocados Somatosensoriales , Sueño/fisiología , Corteza Somatosensorial/fisiología , Vigilia/fisiología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL
14.
Neurobiol Aging ; 96: 165-175, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33011615

RESUMEN

In Alzheimer's disease, brain amyloid deposition has a distinct topography that correlates with aerobic glycolysis (AG), that is, the use of glucose beyond that predicted by oxygen consumption. The causes for this relationship remain unclear but might provide crucialinsight into how amyloid deposition begins. Here we develop methods to study the earliest topography of amyloid deposition based on amyloid imaging and investigate its spatiotemporal evolution with respect to the topography of AG in adults. We find that the spatiotemporal dynamics of amyloid deposition are largely explained by 1 factor, defined here as the amyloid topography dissimilarity index (ATDI). ATDI is bimodal, more highly dynamic during early amyloid accumulation, and predicts which individuals will cross a conservative quantitative threshold at least 3-5 years in advance. Using ATDI, we demonstrate that subthreshold amyloid accumulates primarily in regions that have high AG during early adulthood. Our findings suggest that early on-target subthreshold amyloid deposition mirrors its later regional pattern, which best corresponds to the topography of young adult brain AG.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Proteínas Amiloidogénicas/metabolismo , Encéfalo/metabolismo , Glucólisis , Análisis Espacio-Temporal , Adulto , Aerobiosis , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/etiología , Encéfalo/diagnóstico por imagen , Femenino , Humanos , Masculino , Persona de Mediana Edad , Consumo de Oxígeno
15.
Neuroimage ; 223: 117321, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32882378

RESUMEN

Patterns of low frequency brain-wide activity have drawn attention across multiple disciplines in neuroscience. Brain-wide activity patterns are often described through correlations, which capture concurrent increases and decreases in neural activity. More recently, several groups have described reproducible temporal sequences across the brain, illustrating precise long-distance control over the timing of low frequency activity. Features of correlation and temporal organization both point to a systems-level structure of brain activity consisting of large-scale networks and their mutual interactions. Yet a unified view for understanding large networks and their interactions remains elusive. Here, we propose a framework for computing probabilistic flow in brain-wide activity. We demonstrate how flow probabilities are modulated across rest and task states and show that the probabilistic perspective captures both intra- and inter-network dynamics. Finally, we suggest that a probabilistic framework may prove fruitful in characterizing low frequency brain-wide activity in health and disease.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/fisiología , Imagen por Resonancia Magnética , Adulto , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Modelos Estadísticos , Vías Nerviosas/fisiología , Procesamiento de Señales Asistido por Computador , Adulto Joven
16.
Proc Natl Acad Sci U S A ; 117(34): 20890-20897, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32817467

RESUMEN

Multimodal evidence suggests that brain regions accumulate information over timescales that vary according to anatomical hierarchy. Thus, these experimentally defined "temporal receptive windows" are longest in cortical regions that are distant from sensory input. Interestingly, spontaneous activity in these regions also plays out over relatively slow timescales (i.e., exhibits slower temporal autocorrelation decay). These findings raise the possibility that hierarchical timescales represent an intrinsic organizing principle of brain function. Here, using resting-state functional MRI, we show that the timescale of ongoing dynamics follows hierarchical spatial gradients throughout human cerebral cortex. These intrinsic timescale gradients give rise to systematic frequency differences among large-scale cortical networks and predict individual-specific features of functional connectivity. Whole-brain coverage permitted us to further investigate the large-scale organization of subcortical dynamics. We show that cortical timescale gradients are topographically mirrored in striatum, thalamus, and cerebellum. Finally, timescales in the hippocampus followed a posterior-to-anterior gradient, corresponding to the longitudinal axis of increasing representational scale. Thus, hierarchical dynamics emerge as a global organizing principle of mammalian brains.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/fisiología , Vías Nerviosas/fisiología , Adulto , Corteza Cerebral/fisiología , Cuerpo Estriado/fisiología , Bases de Datos Factuales , Femenino , Sustancia Gris/fisiología , Hipocampo/fisiología , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Descanso/fisiología , Factores de Tiempo
17.
Neuron ; 107(3): 580-589.e6, 2020 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-32778224

RESUMEN

To induce brain plasticity in humans, we casted the dominant upper extremity for 2 weeks and tracked changes in functional connectivity using daily 30-min scans of resting-state functional MRI (rs-fMRI). Casting caused cortical and cerebellar regions controlling the disused extremity to functionally disconnect from the rest of the somatomotor system, while internal connectivity within the disused sub-circuit was maintained. Functional disconnection was evident within 48 h, progressed throughout the cast period, and reversed after cast removal. During the cast period, large, spontaneous pulses of activity propagated through the disused somatomotor sub-circuit. The adult brain seems to rely on regular use to maintain its functional architecture. Disuse-driven spontaneous activity pulses may help preserve functionally disconnected sub-circuits.


Asunto(s)
Corteza Motora/diagnóstico por imagen , Plasticidad Neuronal/fisiología , Restricción Física , Actividades Cotidianas , Moldes Quirúrgicos , Femenino , Lateralidad Funcional , Neuroimagen Funcional , Humanos , Imagen por Resonancia Magnética , Masculino , Corteza Motora/fisiología , Destreza Motora/fisiología , Fuerza Muscular/fisiología , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiología , Extremidad Superior
18.
Neuroimage ; 215: 116810, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32276058

RESUMEN

Spontaneous infra-slow brain activity (ISA) exhibits a high degree of temporal synchrony, or correlation, between distant brain regions. The spatial organization of ISA synchrony is not explained by anatomical connections alone, suggesting that active neural processes coordinate spontaneous activity. Inhibitory interneurons (IINs) form electrically coupled connections via the gap junction protein connexin 36 (Cx36) and networks of interconnected IINs are known to influence neural synchrony over short distances. However, the role of electrically coupled IIN networks in regulating spontaneous correlation over the entire brain is unknown. In this study, we performed OIS imaging on Cx36-/- mice to examine the role of this gap junction in ISA correlation across the entire cortex. We show that Cx36 deletion increased long-distance intra-hemispheric anti-correlation and inter-hemispheric correlation in spontaneous ISA. This suggests that electrically coupled IIN networks modulate ISA synchrony over long cortical distances.


Asunto(s)
Corteza Cerebral/metabolismo , Conexinas/deficiencia , Interneuronas/metabolismo , Red Nerviosa/metabolismo , Inhibición Neural/fisiología , Animales , Corteza Cerebral/citología , Conexinas/genética , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Red Nerviosa/citología , Distribución Aleatoria , Proteína delta-6 de Union Comunicante
20.
Proc Natl Acad Sci U S A ; 117(7): 3808-3818, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32015137

RESUMEN

The amygdala is central to the pathophysiology of many psychiatric illnesses. An imprecise understanding of how the amygdala fits into the larger network organization of the human brain, however, limits our ability to create models of dysfunction in individual patients to guide personalized treatment. Therefore, we investigated the position of the amygdala and its functional subdivisions within the network organization of the brain in 10 highly sampled individuals (5 h of fMRI data per person). We characterized three functional subdivisions within the amygdala of each individual. We discovered that one subdivision is preferentially correlated with the default mode network; a second is preferentially correlated with the dorsal attention and fronto-parietal networks; and third subdivision does not have any networks to which it is preferentially correlated relative to the other two subdivisions. All three subdivisions are positively correlated with ventral attention and somatomotor networks and negatively correlated with salience and cingulo-opercular networks. These observations were replicated in an independent group dataset of 120 individuals. We also found substantial across-subject variation in the distribution and magnitude of amygdala functional connectivity with the cerebral cortex that related to individual differences in the stereotactic locations both of amygdala subdivisions and of cortical functional brain networks. Finally, using lag analyses, we found consistent temporal ordering of fMRI signals in the cortex relative to amygdala subdivisions. Altogether, this work provides a detailed framework of amygdala-cortical interactions that can be used as a foundation for models relating aberrations in amygdala connectivity to psychiatric symptoms in individual patients.


Asunto(s)
Amígdala del Cerebelo/fisiología , Adulto , Amígdala del Cerebelo/diagnóstico por imagen , Atención , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Mapeo Encefálico , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/fisiología , Femenino , Humanos , Individualidad , Imagen por Resonancia Magnética , Masculino , Psiquiatría , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...